
NASA/TM–2016–219196

The Stratway Program for Strategic
Conflict Resolution: User’s Guide

George E. Hagen, Ricky W. Butler, Jeffrey M. Maddalon
Langley Research Center, Hampton, Virginia

May 2016

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include creating
custom thesauri, building customized
databases, and organizing and publishing
research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2016–219196

The Stratway Program for Strategic
Conflict Resolution: User’s Guide

George E. Hagen, Ricky W. Butler, Jeffrey M. Maddalon
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

May 2016

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Abstract

Stratway is a strategic conflict detection and resolution program. It provides both
intent-based conflict detection and conflict resolution for a single ownship in the
presence of multiple traffic aircraft and weather cells defined by moving polygons.
It relies on a set of heuristic search strategies to solve conflicts. These strategies
are user configurable through multiple parameters. The program can be called from
other programs through an application program interface (API) and can also be
executed from a command line.

iii

Contents

1 Introduction 1

2 Flight Plans and Trajectories 1

2.1 Terminology . 2

2.2 Trajectory Change Points (TCPs) 3

2.3 Construction of Plans . 4

3 Approach to Strategic Conflict Resolution 5

4 Conflict Resolution 5

4.1 Stratway Strategies . 5

4.1.1 The Track Strategy . 7

4.1.2 The Vertical Strategy . 9

4.1.3 The Speed Strategy . 11

4.1.4 The SideStep Strategy . 11

4.1.5 Default Order of Strategies 11

4.2 Stratway Output . 12

4.2.1 Utilities to Manipulate Plans 13

4.3 User Configuration of Strategies . 14

4.4 Feasibility Checking of Potential Solutions 14

5 Parameters 15

6 Application Programming Interface (API) 16

6.1 A Word on Units . 17

6.2 Building a Plan . 18

6.2.1 Time Considerations . 18

6.2.2 Key Parameters . 19

6.3 Reading a Plan CSV File . 19

6.4 Conflict Resolution . 19

6.5 Resolution Status . 19

6.6 Messages, Errors, and Warnings . 20

6.7 The getDetector() Method . 21

6.8 Backtracking Solutions . 22

6.9 Weather Polygons . 22

6.9.1 Specifying a Single Polygon With a Velocity Vector 23

6.9.2 Specifying a Sequence of Polygons 23

6.9.3 Polygon Path Modes . 25

6.9.4 Static Polygons . 28

6.9.5 ReRouteWx (Java only) . 28

6.9.6 Dynamic Containment Constraint 30

6.10 Java . 31

6.10.1 ErrorReporter Interface . 31

6.10.2 Position, Velocity, and NavPoint Classes 32

iv

6.10.3 Plan Class . 32
6.10.4 TrajGen Class . 34
6.10.5 Stratway Class . 34
6.10.6 Detector Class . 36

6.11 C++ . 37
6.12 Example Use of the API . 37

7 Core Detection Algorithms 37
7.1 Java Example . 39
7.2 C++ Example . 39

8 Concluding Remarks 42

9 References 45

A NavPoints, Positions, and Velocities 47

B Debugging Tools 49

v

1 Introduction

Stratway is an aircraft-independent, strategic conflict resolution program. This
program receives the planned routes or trajectories of nearby aircraft and makes ad-
justments to its own route to resolve conflicts with other aircraft or weather. Unlike
a full-featured strategic resolver, such as the Autonomous Operations Planner [6], it
does not seek to produce a fuel-efficient, nearly optimal resolution. Instead, Strat-
way resolves conflicts by moving points in the vicinity of a conflict. It presupposes
that the input route is already nearly optimal and therefore an appropriate res-
olution is just a small deviation from the original path. The Stratway resolver
relies exclusively on kinematic calculations and therefore does not depend on the
dynamic performance of any specific aircraft. However, the output resolution can
be controlled by user-specified acceleration and limit parameters.

An important goal of the Stratway project is to explore the verification and val-
idation issues associated with strategic conflict resolution. Therefore, Stratway has
been developed in a manner that makes it possible to establish that a generated
resolution satisfies key safety properties. However, a proof that a resolution will
always be produced cannot been achieved for this program. This is an unfortunate
consequence of the fact that Stratway uses a set of heuristic strategies to search
for a conflict-free route. Because of the inherent need for heuristic search1, a full
verification of a strategic solver is currently beyond the state of the art in verifica-
tion. However, the formal verification of several key components, e.g., the conflict
detection algorithm, is practical and is being pursued in the project.

The primary purposes of this paper are (1) to describe the resolution strategies
(section 4), (2) to describe the application programming interface (API) of Stratway
(section 6), and (3) to provide examples of its use. The resolution strategies are
based on heuristic search techniques and serve as the intellectual core of Stratway.
The API is valuable to programmers who wish to integrate Stratway into another
program, though Stratway can also be run as a stand alone program, both as a
command-line tool and as part of a sophisticated graphical visualization with tools
to create and modify the routes of aircraft. These user-level tools are described
in [5]. Stratway is part of the NASA Langley FormalATM software distribution,
which also includes basic utility functions as well as implementations of the ACCoRD
framework [9].

Version This document is current as of Stratway version v2.5.2.

2 Flight Plans and Trajectories

The planned route of an aircraft used in Stratway can either be a flight plan or a
trajectory. The notion of a flight plan has several different meanings in the national
airspace system today:

1Given the enormous state space for strategic resolution, it is necessary to perform some form
of heuristic search. All practical strategic resolution approaches known to the authors use heuristic
search.

1

1. a sequence of 2-D waypoints (horizontal positions only)

2. a sequence of 2-D waypoints augmented with constraints on altitude and
ground speed—usually in the form of a required time of arrival (RTA)

3. a sequence of 3-D waypoints (horizontal and vertical position) with a nominal
ground speed

4. a sequence of 4-D waypoints (3-D position and time)

The most common form of a flight plan today is described by the second item.
However, this form of flight plan does not contain enough information to perform
conflict detection. Conflict detection requires not only a path, but also an indication
of when the aircraft is at a location. In addition, aircraft can be separated vertically,
instead of horizontally, so aircraft altitude is also critical for determining the presence
or absence of a conflict. For these reasons, Stratway requires that a flight plan be
completely specified as a sequence of 4-D waypoints (the fourth item). An example
flight plan is illustrated in Figure 1.

Figure 1. Sample Flight Plan

Stratway can also operate on a more accurate planned route that is referred to as
a trajectory or a kinematic plan. In a kinematic plan, more information is included
at each velocity change, particularly information about the aircraft’s acceleration.
This additional information is referred to as trajectory change points (TCPs) and
approximates the information available in the standard for communicating aircraft
intent [7]. A kinematic plan generated from the plan in Figure 1 is shown in Figure
2. The vertex points in the flight plan have been replaced with two new TCPs that
are colored yellow in Figure 2. These points are a beginning of turn (BOT) point,
and an end of turn (EOT) point.

2.1 Terminology

Stratway deals with 4-D points (constraints) and the lines that connect them. These
4-D points are called points, which can represent either traditional waypoints in a

2

Figure 2. Sample Kinematic Plan

flight plan or the trajectory change points generated by a flight management system
(FMS). Each line between two subsequent points is called a segment (occasionally
these are referred to as legs). We call a sequence of these points (and their inferred
segments) associated with a particular aircraft a plan, which abstracts both tra-
ditional flight plans and trajectories. Some points can be designated as trajectory
change points (TCPs). If a plan contains such points, we refer to the plan as a
kinematic plan (or trajectory) and if they do not contain any TCPs then we say
that the plan is linear.

It is expected that plan information in actual or simulated craft will be commu-
nicated via Automatic Dependent Surveillance-Broadcast (ADS-B) or other similar
means, that is based on Global Positioning System (GPS) data. Therefore, highly
accurate position information will be available, from which accurate groundspeed
can be calculated that is independent of airspeed. The objects representing plans
(the Plan class) contain only 4-D point information, so changes in the specified time
for a point results in a speed change on the segment leading up to that point. The
Stratway visualization allows users to easily draw plans in a graphical manner.

2.2 Trajectory Change Points (TCPs)

The Stratway resolution strategies rely on an internal trajectory generator that can
be configured to approximate the characteristics of different aircraft types [4]. We
often refer to a Stratway generated trajectory as a kinematic plan. In a kinematic
plan, the following types of TCPs are allowed, representing areas of acceleration:

BOT beginning of turn
EOT end of turn
BGS beginning of ground speed acceleration
EGS end of ground speed acceleration
BVS beginning of vertical speed acceleration
EVS end of vertical speed acceleration

3

Every BOT point must be followed by an EOT point and there can be no overlaps
with other turns. Every BGS point must be followed by an EGS point and there
can be no overlaps with other ground speed accelerations. Every BVS point must
be followed by an EVS and there can be no overlaps with other vertical speed
accelerations.

The region between a begin TCP and the corresponding end TCP are constant
acceleration regions. The TCPs are annotated with the acceleration rate to enable
simple calculation of the speed and velocity for all points within these regions.
Stratway produces resolutions that include these TCPs but the resolution plans are
also easily converted back to linear plans, if that is desired.

2.3 Construction of Plans

There are two ways to construct a plan:

• Develop each waypoint separately and deliver them to a Stratway object via
API methods (Section 6),

• Create a comma separated values (CSV) text file and load one or more com-
plete plans (Section 6.3).

The basic textual representation of plans, for example, in a CSV file, is simple, as
shown in Figure 3. This text file defines two plans: one for aircraft Ownship and the
other for aircraft Traffic. The columns provide latitudes and longitudes in units
of degrees, altitudes in feet, and time in seconds.

NAME, lat, long, altitude, time

Ownship, 0.2994, -0.6298, 5000.0, 0.00

Ownship, 0.2994, -0.1579, 5000.0, 391.36

Ownship, 0.2034, 0.4806, 5000.0, 900.42

Ownship, -0.0102, 1.1440, 5000.0, 1800.00

Ownship, 0.0663, 1.7125, 5000.0, 2535.49

Traffic, -0.2526, -0.6266, 5000.0, 0.00

Traffic, -0.2364, -0.1876, 5000.0, 364.29

Traffic, -0.1040, 0.3438, 5000.0, 812.88

Traffic, 0.3402, 0.8284, 5000.0, 1303.99

Traffic, 0.9189, 1.2190, 5000.0, 1794.31

Figure 3: CSV formated plan example.

There is also a textual version of kinematic plans that can be used, but it is
not recommended that these be constructed manually. It is very easy to construct
inconsistent plans in this way because there are many fields in a kinematic plan
that have a strict mathematical relationship to other fields. The API contains a set
of functions that can automatically construct a kinematic plan from a linear plan.
These are described in a separate report [4].

4

3 Approach to Strategic Conflict Resolution

A key concept present in many future air traffic management concepts (including
NextGen) is Trajectory Based Operations (TBO), which is especially concerned
with high-altitude cruise operations in en route airspace. The shift from today’s
clearance-based system to a trajectory-based system should enable aircraft to fly
flight paths created by full performance-based navigation systems that take both op-
erator preferences and optimal airspace system performance into consideration [3].
But this increased flexibility and performance comes at a price—airspace conflicts
will frequently arise and must be safely resolved in a timely manner. Many advocates
for TBO believe that this will require the exchange of trajectory information in real
time [2]. The particular details about this information exchange is still very much a
research issue. However, some progress has been made in this area by the RTCA in
the development of the DO-242A minimum aviation system performance standards
for Automatic Dependent Surveillance-Broadcast (ADS-B). In particular, Appendix
A provides “Intent Guidance Material for Future ADS-B Intent Broadcast”. Nev-
ertheless, there are many competing ideas and there is no consensus about how this
should be done.

Stratway is a strategic conflict detection and resolution program that has the
following goals:

• Usable for any aircraft type, independent of any particular flight management
system,

• Key functions are formally verified using the Prototype Verification System
(PVS) theorem prover, so that a strong safety case can be constructed around
its use,

• Operate on trajectories and flight plans that can be communicated in an effi-
cient manner,

• implemented in both Java and C++.

In Figure 4 we see a complex traffic scenario where the ownship’s plan is in con-
flict with two other aircraft; Figure 5 shows the Stratway resolution. The Stratway
track solution removes both conflicts.

4 Conflict Resolution

The Stratway program consists of four basic strategies for resolving conflicts: Track,
Vertical, Speed, and SideStep. The behavior of these strategies can be controlled
by user-settable parameters.

4.1 Stratway Strategies

Each of the Stratway strategies uses iterative techniques to search for solutions.
By default, they are applied in a predetermined order. Candidate solutions are

5

Figure 4: Complex Traffic Scenario With Double Conflict

Figure 5: Complex Traffic Scenario With Double Conflict, Resolved

6

kinematic plans generated based on user-provided physical limits (acceptable accel-
eration values, limits on speeds, etc.). If the candidate solution is conflict free, no
further solutions are sought, and resolveConflicts() returns this solution. There
are three key properties that the Stratway strategies must achieve:

• The location in the plan where the ownship is currently located cannot move

• The velocity vector at the point where the ownship is currently located cannot
change. However, an acceleration must start at or after this point.

• If the program provides a solution, the detected conflict will have been resolved
and no new conflicts will have been introduced into earlier parts of the plan.
Conflicts beyond the detection threshold may remain in the plan.

4.1.1 The Track Strategy

The Track strategy seeks to resolve the conflict through a sequence of turns without
changing the current vertical speed of the aircraft. The track strategy begins by
removing points in the vicinity of the conflict from the ownship plan. We call this
isolating the conflict. This isolation is illustrated in Figures 6 and 7. This step is
especially useful for a plan that has many closely-spaced points.

Figure 6: Before isolateConflict()

Figure 7: After isolateConflict()

The next step is to construct a linear plan that (1) starts at the first isolation
point, (2) turns away from the conflict, (3) continues parallel to the line connect-
ing the isolation points, and then (4) turns back to the final isolation point. The

7

template for the track strategy is shown in Figure 8. In this figure isolation points
are shown as hexagons. This template is varied by iterating over parameters that
define its structure. Three aspects of this pattern are varied in nested for loops: the
target track angle (targetTrk) from point 1 to point 2, the length of the segment
from point 1 to point 2 (LEG1), and the length of the segment from point 2 to point
three (LEG2).

The location of point 1 is calculated first. Using a kinematic turn function (that
is provided the speed into the turn and an aircraft bank angle), the location where
the velocity vector first points in the direction of the target track (i.e., targetTrk),
is calculated, resulting in point 1. Then the vertex point 0 is computed as an
intersection point. Point 2 is calculated as a linear projection from point 1 with
length (LEG1). Next point 3 is computed from length (LEG2) and the direction of
the line between the hexagonal isolation points. Point 4 is then calculated using
the final isolation point: this is the beginning of a turn that results in the velocity
vector correctly aligned with the final isolation point. Point 5 is computed as an
intersection point of the line from point 3 to point 4 and the line out of the final
isolation point.

0

conflict

LEG1

LEG2

2

3

4

1

Figure 8: Template For Track Strategy

The parameters of the template are varied in a set of nested for loops, as seen in
Figure 9. Note that the target evasive track (targetTrk) is determined by an angle
trkDelta and a turn direction dir which is either +1 or -1. After the linear plan is
constructed, a kinematic plan is generated from the linear plan, which creates four
turn acceleration zones. This kinematic plan is inserted within the isolation points
of the ownship plan and checked with a strategic conflict probe called CDII. If the
proposed resolution is conflict free, then this resolution is returned by Stratway.
Otherwise the iteration continues. If all four nested loops are exhausted, the Track

strategy fails.

The ground speed remains constant throughout the maneuver. Because the
distance is greater in the resolution as compared to the original plan, the time at the

8

for (trkDelta = trkStart; trkDelta < 70; trkDelta += trkStep) {

for (dir = -1; dir < 2; dir += 2) {

for (Seg1 = 0.0; Seg1 <= maxSeg1; Seg1 += step1) {

for (Seg2 = 0.0; Seg2 <= maxSeg2; Seg2 += step2) {

Generate Linear Plan

Translate Into Kinematic Plan

if conflict-free then return solution;

}

}

}

}

return failure;

Figure 9: Track strategy algorithm

last isolation point must be increased. This time delta increase is then propagated
throughout the remainder of the plan.

TrackEarly Variation The Track strategy has a preset variation called
TrackEarly. TrackEarly expands the isolation zone to be closer to the ownship’s
current position, allowing for an earlier (and potentially less severe) maneuver. See
Section 4.3.

4.1.2 The Vertical Strategy

The Vertical strategy seeks to resolve the conflict through a sequence of climbs and
descents without changing the current track of the aircraft. This strategy begins
by removing points in the vicinity of the conflict from the ownship plan using the
same isolateConflic()t method as the track strategy. The template used for the
vertical strategy is shown in Figure 10. This template is varied by iterating over
parameters that define its structure. Three aspects of this pattern are varied in
nested for loops: the vertical speed (targetVs) from point 1 to point 2, the length
of the segment from point 1 to point 2 (LEG1), and the length of the segment from
point 2 to point three (LEG2).

The location of point 1 is calculated first. Using a kinematic vertical acceleration
function (that is provided the vertical speed into the first isolation point and a
vertical acceleration value), the location where the target vertical speed is achieved
is calculated, resulting in point 1. Given this point the vertex point 0 is computed as
an intersection point. (Note that after point 0 is calculated, point 1 is redundant.)

These parameters are varied in nested for-loops, as seen in Figure 11. Note that
target vertical speed (targetVs) is determined by a delta speed vsDelta and an
up/down direction variable dir which is either +1 or -1. Similarly to the Track

strategy, after the linear plan is constructed, a kinematic plan is generated from the
linear plan, which creates four vertical acceleration zones. This kinematic plan is

9

0

1

4

LEG2

LEG1

conflict

Altitude

2 3

Figure 10: Template For Vertical Strategy

for (int vsDel = 500; vsDel <= 3000; vsDel += 500) {

for (dir = -1; dir < 2; dir += 2) {

for (Seg1 = 0.0; Seg1 <= maxSeg1; Seg1 += step1) {

for (Seg2 = 0.0; Seg2 <= maxSeg2; Seg2 += step2) {

Generate Linear Plan

Translate Into Kinematic Plan

if conflict-free then return solution;

}

}

}

}

Figure 11: Vertical strategy algorithm

10

inserted within the isolation points of the ownship plan and checked with a strate-
gic conflict probe called CDII. If the proposed resolution is conflict-free, then this
resolution is returned by Stratway. Otherwise the iteration continues. If all four
nested loops are exhausted, the Vertical strategy fails. The ground speed remains
constant throughout the maneuver.

4.1.3 The Speed Strategy

The Speed strategy seeks to resolve the conflict through a sequence of ground speed
changes without changing the current vertical speed of the aircraft or making any
turns. Unlike the Track and Vertical strategies, the Speed strategy does not
perform an isolateConflict() step. The strategy seeks to retain the locations of
the points in the plan and only alter the times of those points. The concept for
this strategy is illustrated in Figure 12. In this illustration, there is a conflict that

0

3

4

1

2

Figure 12: Concept of the Speed Strategy

starts on the segment between points 1 and 2 and ends on the segment between
points 2 and 3. The strategy inserts acceleration zones before and after the conflict
in order to increase or decrease the speed in the conflict region. The strategy seeks
to introduce the speed change at an early time, because this results in a smaller
ground speed change. The beginning and end points of the acceleration zones are
marked by red colored dots.

4.1.4 The SideStep Strategy

The SideStep strategy seeks to resolve conflicts by only moving the waypoint im-
mediately before a conflict. It is not as powerful as the Track resolution, but it
can sometimes find a simpler, more efficient solution than the Track strategy. This
strategy does not use the isolateConflict() function to remove points near a con-
flict, so it works most effectively for flight plans or trajectories with long segments.
It inserts a lead-in point ahead of the current location of the aircraft if it is currently
on the plan segment immediately before the conflict segment. This point is labeled
blue in Figure 13.

4.1.5 Default Order of Strategies

The default order of the strategies is: SideStep, TrackEarly, Vertical, Speed,
Track. Advanced users may wish to alter the order of the application of the

11

conflict

Figure 13: The SideStep Strategy

strategies or only use a subset of them. This is achieved by calling a method
setStrategies() which takes a string argument that lists the strategies by name
in the order desired. The current list of strategy names are SideStep, TrackEarly,
Vertical, Speed, and Track. For example, the code skeleton in Figure 14 illustrates
how to do this through the Java API.

ArrayList<Plan> plans = new ArrayList<Plan>(10);

plans =

Stratway sw = new Stratway();

for (Plan fp: plans) {

sw.addPlan(fp);

}

Plan solution = new Plan;

setStrategies("Track, Vertical");

solution = sw.resolveConflicts();

Figure 14: Setting strategy order

4.2 Stratway Output

The resolveConflicts() method returns a new ownship plan. If
getResolutionStatus() == CONFLICT_FREE, then the returned plan will be con-
flict free. The Java code in Figure 15 illustrates this. The returned plan file

Stratway sw = new Stratway();

Plan nPlan = sw.resolveConflicts();

if (sw.getResolutionStatus()

== Stratway.ResolutionStatusValue.CONFLICT_FREE) {

...

}

Figure 15: Checking resolution status

nPlan will be a kinematic plan, that is, the repaired section will contain TCPs. This
plan can be converted into a linear plan if that is desired as follows:

Plan lPlan = TrajGen.makeLinearPlan(nPlan);

12

All of the acceleration zones will be removed and replaced with constant velocity
segments. See Sections 6.10.5 and 6.10.4 for more details.

4.2.1 Utilities to Manipulate Plans

A Plan object is a sequence of NavPoints. The NavPoint class is discussed in
Section 6.10.2. The Plan class is intended to serve as an abstraction for both aircraft
flight plans and aircraft trajectories. The Plan class provides methods to construct
plans, retrieve information from plans, and also to calculate relevant information
about plans.

Individual NavPoints are retrieved from a Plan using the point method:

int i = myPlan.size()-1;

NavPoint p0 = myPlan.point(i);

In this code segment the last point (i.e., point i) in plan myPlan is retrieved. The
following functions can be used to obtain the position and velocity that corresponds
to a specific point of time t in a plan:

public Position position(double t)

public Velocity velocity(double t)

Plans are typically created from an empty plan by adding NavPoints using the
add method, as shown in Figure 16. In this code segment, four 3-D Positions are
created by specifying latitudes, longitudes, and altitudes. Then 4-D NavPoints (i.e.
np0, np1, np2, np3) are created from this by associating times. Finally, these are
added to the newPlan object using the add method. See section 6.10.3 for more
details.

Plan newPlan = new Plan();

Position p0 = new Position(LatLonAlt.make(0.0000, 0.0000, 23000));

Position p1 = new Position(LatLonAlt.make(-0.3870, 0.9358, 23000));

Position p2 = new Position(LatLonAlt.make(-0.3062, 1.6488, 23000));

Position p3 = new Position(LatLonAlt.make(-0.0785, 2.1500, 23000));

NavPoint np0 = new NavPoint(p0, 937.1);

NavPoint np1 = new NavPoint(p1, 1376.3);

NavPoint np2 = new NavPoint(p2, 1687.5);

NavPoint np3 = new NavPoint(p3, 1926.0);

newPlan.add(np0);

newPlan.add(np1);

newPlan.add(np2);

newPlan.add(np3);

Figure 16: Constructing a plan.

13

4.3 User Configuration of Strategies

The Stratway strategies can be tailored through user-definable parameters. For
example, the direction of the maneuvers can be constrained or the size of the isolation
region can be altered. There are also early/late options which control how near to
the conflict the Stratway program starts the maneuver.

The direction of the solutions can be constrained using the following Stratway
methods:

setTurnDirectionLeftRight() Directs the Track or SideStep algorithm
to only return solutions where the own-
ship turns left (-1) or turns right (+1).

setTurnDirectionBehindFront() Directs the Track or SideStep algorithm
to only return solutions where the own-
ship goes behind (-1) or in front (+1) of
the traffic aircraft.

setVerticalDirectionDownUp() Directs the Vertical solution algorithm to
only return solutions where the ownship
descends (-1) or climbs (+1).

setSpeedDirectionSlowFast() Directs the Speed solution algorithm to
only return solutions where the ownship
turns slows down (-1) or speeds up (+1).

setSpeedDirectionBehindFront() Directs the Speed solution algorithm to
only return solutions where the ownship
goes behind (-1) or in front (+1) of the
traffic aircraft.

The Track strategy has an “early” mode. Setting early mode causes the track
maneuver to attempt to start at an earlier time and to recapture the original plan
at a later time, ideally resulting in a more gradual change.

4.4 Feasibility Checking of Potential Solutions

The resolveConflicts() method uses heuristic search methods (i.e., the strategies)
to find solutions on a segment-by-segment basis. These methods start with the
first conflict and then proceed to subsequent conflicts after a fairly local solution
to the first conflict is found. When a potential solution has been found (i.e., it
passes the conflict detector), the program next checks that the solution is physically
reasonable. For example, it throws away potential solutions that require a ground
speed that exceeds a specified maximum value. The feasibility checker is governed
by parameters that are user specifiable. If a solution produced by a strategy fails a
feasibility test, it is rejected and another strategy is tried. The checks are performed
using the following constants:

14

minGroundSpeed 50.0 kn minimum ground speed allowed
maxGroundSpeed 700.0 kn maximum ground speed allowed
maxVerticalSpeed 5000.0 fpm maximum vertical speed allowed
minVerticalSpeed -5000.0 fpm minimum vertical speed allowed
maxAltitude 40000.0 ft maximum altitude allowed
minAltitude 0.0 ft minimum altitude allowed
latLonAccuracy 0.10 nmi max error for latlon calculations
defaultClimbRate 1500 fpm rate of climb for stepClimb
maxBankAngle 30.0 deg max acceptable bank angle
maxGsAccel 2.0 m/s2 max acceptable horizontal acceleration
maxVsAccel 2.0 m/s2 max acceptable vertical acceleration

These constant parameters may be specified in input files, in the Visualization Tool
through the Parameter Panel or through the API mutator methods.

5 Parameters

The Stratway program is flexible and highly configurable by the user. Parameters
can be set within any of the three main interfaces: command-line, API, and visu-
alization. This configurability has advantages and disadvantages. A key advantage
of this approach is that the program can be used in a wide range of applications.
The major disadvantage is that this flexibility increases the learning curve asso-
ciated with the program. Although the parameter defaults are carefully chosen,
users should not assume that these defaults will be appropriate for their particular
application.

Some of the more useful parameters are defined as follows:

backtrackSearch If set to true, Stratway will check additional combinations of
strategies.

bufDdet sets the horizontal detection buffer distance. This is added to D for de-
tection calculations, allowing for a given amount of uncertainty in data.

bufDres sets the horizontal resolution buffer distance. This is added to D for de-
tection calculations, allowing for a given amount of uncertainty in data.

bufHdet sets the vertical detection buffer distance. This is added to H for detection
calculations, allowing for a given amount of uncertainty in data.

bufHres sets the vertical resolution buffer distance. This is added to H for detection
calculations, allowing for a given amount of uncertainty in data.

checkPerformance If set to true, will enforce performance feasibility constraints.

D sets the horizontal regulation separation distance.

H sets he vertical separation distance.

15

isolationLookahead Several strategies remove points that are within a conflict
zone in order to allow for more reasonable resolutions. This value represents a
time buffer before and after a conflict, between which all points are removed.

latLonAccuracy Approximate allowed error in calculating relative latitude and
latitude positions.

maxAltitude sets the maximum altitude allowed.

maxBankAngle sets the max acceptable bank angle.

maxGsAccel sets the max acceptable horizontal acceleration rate.

maxVsAccel sets the max acceptable vertical acceleration rate.

maxGroundSpeed sets the maximum allowed ground speed.

maxVerticalSpeed sets the maximum vertical speed allowed.

minAltitude sets the minimum altitude allowed.

minGroundSpeed sets the minimum allowed ground speed..

minVerticalSpeed sets the minimum vertical speed allowed.

strategies A comma or whitespace-delimited list of the strategies to be tried in the
search, and in which order. Only one resolution will be generated.

T sets both T_d and T_r to the same value [sec].

T d sets the maximum conflict detection lookahead time, from the TimeOfCur-
rentPosition (usually the start of the ownship plan) [sec].

T r sets the maximum resolution detection lookahead time, from the TimeOfCur-
rentPosition (usually the start of the ownship plan) [sec].

TimeOfCurrentPosition This indicates where the ownship aircraft is currently
located relative to its plan. This is only needed if Stratway is given a plan
that has ownship points in the “past”.

See also the note on units in Section 6.1.

6 Application Programming Interface (API)

The API to Stratway allows another program to call Stratway functions,
such as resolveConflicts(), that operate on a set of plans. The function
resolveConflicts() returns a revised ownship plan with all conflicts and losses
of separation removed. The API provides the tools needed to construct and manip-
ulate plans. The expected use is as follows:

1. Create a Stratway object S.

16

2. For each aircraft (ownship first), create a Plan object P and call S.addPlan(P).

3. Set parameter values using API functions (if default value is not desired).

4. Plan rtn = S.resolveConflicts();

5. If S.hasError() is true then Stratway has generated an error, otherwise rtn

contains an updated plan.

6. If S.getResolutionStatus() returns the value
Stratway.ResolutionStatusValue.CONFLICT_FREE then rtn contains a
conflict-free plan.

7. Otherwise, conflicts remain—use S.getDetector() to examine the unresolved
conflicts.

8. If there are no remaining conflicts, use the call rtn.point(i) to retrieve the
new position for each waypoint i.

9. Call S.clearPlans(), and repeat as necessary.

See section 6.12 for code examples.

6.1 A Word on Units

Many times Stratway will need to be supplied with a particular value. Most API
calls that require a value will typically fall into one of several patterns:

• class.make(double value, String unit): The indicated value is to be inter-
preted in the user-specified unit for “make” methods. This pattern is typically
used in factory methods for low-level objects.

• class.make(double value): If the unit-specifying string is not included in
the formal parameters to the “make” call, it is understood to follow usual
unit conventions for air traffic in the United States. For example, a call to
LatLonAlt.make() assumes degrees for latitude and longitude and feet for
altitude.

• method(double value, String unit): The indicated value is to be interpreted
in the user-specified unit. This pattern is typically used for setters and getters.

• class.method(double value): Methods without an explicit unit specifier as-
sume standard SI [8] base or derived units (radians, meters, seconds, meters
per second). This includes “mk”-style factory methods—as opposed to “make”
factory methods described above.

Examples of acceptable unit strings include kts, deg, nmi, ft, s, fpm, and m/s. See
the Util.Units class for more unit definitions. It is strongly recommended that
users utilize method calls that explicitly specify the intended units in order to avoid
confusion.

17

Parameters in text files generally default to usual air traffic unit conventions
(angles in degrees, horizontal distances in nautical miles, altitudes in feet, ground
speeds in knots, vertical speeds in feet per minute, time in seconds), though it is
always possible to specify a given unit, for example:

D = 5.0 [nmi]

H = 1000.0 [ft]

T = 5.0 [min]

6.2 Building a Plan

The Stratway API provides convenient methods in the Plan class to construct plans.
These methods construct plans from a sequence of NavPoints. The programmer first
creates a Plan object as follows:

Plan own = new Plan()

NavPoints are added using the add method:

own.add(NavPoint.makeLatLonAlt(lat1,lon1,alt1,t1));

own.add(NavPoint.makeLatLonAlt(lat2,lon2,alt2,t2));

.

.

own.add(NavPoint.makeLatLonAlt(latN,lonN,altN,tN));

The Stratway object is created and then a plan is added as follows:

Stratway sw = new Stratway();

sw.addPlan(own);

By convention, the first plan added is considered to be the ownship. The traffic
aircraft plans are created in the same way and then added

sw.addPlan(traf1);

sw.addPlan(traf2);

.

.

.

sw.addPlan(trafN);

Additional flexibility is available through methods in the NavPoint class. See Ap-
pendix A for more detail.

6.2.1 Time Considerations

The Stratway program assumes that all points in a plan are distinct in time. In
fact, two points in a plan cannot be closer in time than the internal plan parameter
minDt = 10−5 seconds. This is necessary to avoid numerical problems with certain
operations and to keep point indexing straightforward. If one attempts to add a
new point that is within minDt seconds of a point that is already in the plan, the
new point will be dropped.

18

6.2.2 Key Parameters

A plan is interpreted and processed by user-defined parameters. Often the defaults
are appropriate, but the Stratway user should exercise due diligence in setting these
parameters appropriately. The following parameters should be given special con-
sideration: TimeOfCurrentPosition, T_d, and T_r. See section 5 for a detailed
description of available parameters.

6.3 Reading a Plan CSV File

There are several reader classes included in the FormalATM distribution that allow
for the automatic reading of CSV plan files, including sets of parameters. The code
in Figure 17 will load the plans described in filename into the Stratway object sw.

import gov.nasa.larcfm.Util.PlanReader;

.

.

.

PlanReader reader = new PlanReader();

reader.open(filename);

for (int i = 0; i < reader.size(); i++) {

sw.addPlan(reader.getPlan(i));

}

Figure 17: Reading in plans

For files that also contain polygon information, the PolyReader class may be
used instead.

6.4 Conflict Resolution

After the Stratway object is created and plans have been added using the sw.addPlan
method, the sw.resolveConflicts() method can be called. This method applies
strategies for each detected conflict in a predetermined order. This predetermined
order can be the default order or a user-specified order. The output is a new plan
for the ownship. For example:

Plan own = sw.resolveConflicts();

provides such a new plan.

6.5 Resolution Status

Stratway is not guaranteed to find a conflict-free resolution; the user must be sure
to determine the status of what was returned. After a call to resolveConflicts(),
the status can be found as follows:

Stratway.ResolutionStatusValue v = sw.getResolutionStatus();

19

The return type ResolutionStatusValue is an enumeration with the following val-
ues:

UNKNOWN No resolution has been attempted or Stratway terminated in
an unknown failure state.

CONFLICT_FREE Stratway returned a conflict free ownship plan (“success”).
SEARCH_DONE Call to nextResolution() has failed with no more possible

solutions.
UNRESOLVED No conflicts were able to be resolved.
LOS Ownship started in loss of separation; Stratway cannot con-

tinue. In this situation a state-based program such as Chorus
can be used to get the aircraft out of loss of separation [1].

If the returned value is SEARCH_DONE, UNRESOLVED, or LOS, the getDetector()

method described in Section 6.7 can be used to get information about remaining
conflicts.

6.6 Messages, Errors, and Warnings

Stratway implements the ErrorReporter interface (Section 6.10.1), meaning it in-
ternally logs any errors and warnings. Collectively, these are referred to as messages.
In general, an error means that the software encountered a situtation where there
is no reasonable recovery. Any results should be ignored. Warnings, on the other
hand, represent situations where the results could be correct, but more likely are in
error. Errors should never be ignored, whereas warnings, depending on context could
be ignored. If Stratway has encountered a serious error, the call sw.hasErrors()
will return true. Errors and warnings produced by Stratway can be obtained as
follows:

if (sw.hasMessage()) System.out.println(sw.getMessage());

In addition, Stratway logs internal strategy messages. These messages pro-
vide information regarding how the strategy was computed. This is purely in-
formational and can be ignored. The detailed strategy messages after a call to
ResolveConflicts() can be printed as follows

System.out.println(sw.getStratMessage());

A single-line abbreviated message listing the strategies used in ResolveConflicts()

can be obtained by:

System.out.println(sw.getStratSummaryMessage());

Note that over extended periods of time, Stratway can generate a large amount
of logged information, and it is highly recommended that the user periodically
clear this data to free memory. Status messages are automatically cleared when
the sw.clearPlans() or sw.clearStratMessage() are called. Error messages are
cleared when they are read via sw.getMessage().

20

6.7 The getDetector() Method

After a Stratway object (e.g., sw) has been constructed, details about all of the
ownship conflicts can be obtained. To do this, the user first creates a Detector

object as follows:

Detector det = sw.getDetector();

The status is then available from the conflict() and size() methods:

boolean conflictsFound = det.conflict();

int numConflicts = det.size();

Next, methods can be called to obtain the information about the times associated
with the conflict using the following Detector methods:

double getTimeIn(int i) Returns the start time of the conflict [s]. This
value is in absolute time.

double getTimeOut(int i) Returns the end time of the conflict [s]. This
value is in absolute time.

double getTimeClosest(int i) Returns the time of closest approach for the
conflict [s]. This value is in absolute time.

The code fragment in Figure 18 illustrates how to print out information about all
of the conflicts.

Stratway sw = new Stratway();

Detector det = sw.getDetector();

for (int j = 0; j < det.size(); j++) {

double tmIn = det.getTimeIn(j);

double tmOut = det.getTimeIn(j);

double tmClosest = det.getTimeIn(j);

System.out.print("Conflict "+j+": "+tmIn+","+tmOut+","+tmClosest);

}

Figure 18: Printing conflict information

The getDetector method can be used before and after a call to
resolveConflicts(). If resolveConflicts() is only partially successful (i.e. it
was only able to resolve a subset of the conflicts), then information about the re-
maining conflicts will be returned. The following methods are also available:

21

int getTrafficID(int i) Returns the traffic ID (string identifier) for
the i-th conflict.

int getTrafficIndex(int i) Returns the index number in the set of plans
sent to the Detector (or sw) corresponding
to the traffic aircraft involved in conflict i.

void sortConflicts() Sorts all conflicts based on their start times.
int getNextConflict(double tt) Returns the index of the next conflict which

starts after time tt.

The getDetector function can also take a parameter that is a new ownship plan:

Detector det = sw.getDetector(ownshipPlan);

In this case, the detection status is reported with respect to this alternate ownship
plan rather than the one currently in the Stratway object. For example, such a call
can return a Detector object that can be used to get conflict information about
the (uncorrected) original ownship plan after resolveConflicts() has been called.
This method does not change the state of the Stratway object.

Note that conflicts returned in a Detector object are not in any particular order
unless the user explicitly requests that they be sorted.

6.8 Backtracking Solutions

It is possible to retrieve multiple solutions from Stratway, all using the same search
strategy list by using a backtracking search.

Stratway sw = new Stratway();

Plan p = sw.resolveConflict();

while (sw.getResolutionStatus() ==

ResolutionStatusValue.CONFLICT_FREE) {

p = sw.nextResolution();

}

Figure 19: Returning multiple solutions

The fragment in Figure 19 will loop through all resolutions that can be generated
using different orderings of the strategies in the default strategy list, stopping when
there are no more possible solutions. There are also variations that may be used
with arbitrary strategy lists. If the resolution status returns SEARCH_DONE, then
no more backtracking is possible using this strategy list. Setting the parameter
backtracksearch to false will disable this function.

6.9 Weather Polygons

In addition to aircraft traffic, Stratway has been designed to solve conflicts while
respecting polygonal regions to avoid (such as weather cells or special use airspace)

22

or remain within (containment). Polygons are arbitrary two-dimensional shapes
with an associated lower and upper altitude bound. These polygons may be moving
or static.

Moving polygons are represented by a sequence of polygons, each with a time
stamp, analogous to an aircraft’s plan. Alternatively, a time sequence of polygons,
each with a velocity vector, can be used to describe a weather system. The first
approach allows the shape of the polygon to smoothly change between time anchor
points (morphing), but the number of vertices must remain constant. The second
approach allows a different number of vertices for the sequence of polygons, but there
is a potential discontinuity at each time point—the shape of the moving polygon
stays the same until the next polygon is processed, where it may change.

Stratway recognizes simple polygons. Polygons may be non-convex, but they
may not contain any zero-length, overlapping, or crossing edges. Each vertex must
connect to exactly two edges—there is an implicit edge between the last vertex and
the first vertex—and a vertex may not intersect with an edge that it is not connected
to. To ensure no edges overlap, vertices should be added in either a clockwise or
counterclockwise ordering.

There are three ways to specify a moving polygon path:

• A single polygon with a velocity vector (static),

• A sequence of polygons with a time associated with each polygon (morphing
or using average velocity),

• A sequence of polygons each with a velocity vector and time-stamp (using
user-specified velocitied).

In the first case, the polygon never changes shape and continues forever with the
specified velocity. If the specified velocity is zero, then the polygon is stationary.
For variaions on the second and third cases, see Section 6.9.3, below.

Simplifying polygons by reducing the total number of edges can significantly
increase Stratway’s performance.

6.9.1 Specifying a Single Polygon With a Velocity Vector

A polygon is defined as a SimplePoly, which has a sequence of Positions, entered
either clockwise or counterclockwise, along with a top and bottom altitude. The
SimplePoly then has a velocity associated with it (as well as identifier) by being
placed in a PolyPath. It may have a user-specified velocity associated with it, or it
may derive its velocity from other polygons in its path (and have an implied zero
velocity if it is a singleton). An example of creating a single moving polygon is in
Figure 20.

6.9.2 Specifying a Sequence of Polygons

The following steps can be used to define a polygon with more complex movement
in Stratway:

23

Stratway sw = new Stratway();

Position v0 = Position.makeLatLonAlt(2.571, 17.684, 0.0);

Position v2 = Position.makeLatLonAlt(6.313, 11.484, 0.0);

Position v4 = Position.makeLatLonAlt(10.361, 17.226, 0.0);

Position v6 = Position.makeLatLonAlt(13.454, 22.139, 0.0);

Position v8 = Position.makeLatLonAlt(10.341, 22.368, 0.0);

SimplePoly sPoly1 = new SimplePoly(0,10000,"ft");

sPoly1.addVertex(v0);

sPoly1.addVertex(v2);

sPoly1.addVertex(v4);

sPoly1.addVertex(v6);

sPoly1.addVertex(v8);

Velocity v = Velocity.makeTrkGsVs(145,510,0.0);

PolyPath pp = new PolyPath("Storm_A");

pp.addPolygon(sPoly1, v, 0.0);

sw.addPolyPath(pp);

Figure 20: Creating a single moving polygon

24

• Define each polygon by adding vertices to a SimplePoly object.

• Create a PolyPath by adding each of the above polygons with a timestamp.

The code segment in Figure 21 illustrates the process in Java. The instruction
SimplePoly sPoly1 = new SimplePoly(0,10000,"ft"); creates a base 3-D ob-
ject for the polygon’s horizontal structure. The first two parameters define the
bottom and top altitudes of the polygon. The PolyPath in this example has only
two polygons with timestamps 0.0 and 54210.0.

It is also possible to create a simple 2-step PolyPath with the method
pathFromState(). Given sPoly1 from above, the following code will produce the
same path (within the system’s numeric precision):

Velocity v = Velocity.makeTrkGsVs(302.2438, 34.5235, 0.0000);

PolyPath pp = PolyPath.pathFromState("ppA",sPoly1,v,0.0,54210.0);

6.9.3 Polygon Path Modes

Each polygon path object has a parameter that defines how sequences of polygons
are interpreted, its “path mode”. This parameter can take one of four distinct
values that determine how polygon velocities are treated between steps. These
are MORPHING, AVG_VEL, USER_VEL, and USER_VEL_FINITE. Generally the mode is
determined by the method used to add steps to the PolyPath, but it can be explicitly
set via the setPathMode() method.

MORPHING A morphing path treats all vertices as having individual velocities.
This allows the polygon’s shape to alter between steps. These are calculated by
comparing a given step with the subsequent step. The final step in such a path does
not have a velocity associated with it, and signals the end of the path. When in
MORPHING mode, each step must have the same number of vertices as all previous
steps. This is the default mode set when polygons are added to the path with the
addPolygon(poly, time) method.

A polygon on a morphing path smoothly transforms between steps even if the
shape of each step is different, and has a distinct beginning and end of existence
(except static polygons, below). If morphing is selected then the Stratway program
uses interpolation between the polygons to determine intermediate states. This is
illustrated in Figure 22.

AVG VEL An AVG_VEL (average velocity) path moves the entire polygon with
a constant velocity, preserving its shape. This velocity is calculated by comparing a
polygon’s “average point”2 with the subsequent step’s average point. The final step
does not have a velocity associated with it and signals the end of the path. Average
velocity paths treat each step as a distinct state change from the previous one and do

2This is the average of all vertices, which is distinct from the centroid, the (weighted) average
of the polygon’s included area, or “center of mass”. For morphing polygons, the centroid’s velocity
between two steps is not necessarily consistent, while the average point’s velocity is.

25

Stratway sw = new Stratway();

Position v0 = Position.makeLatLonAlt(2.571, 17.684, 0.0);

Position v2 = Position.makeLatLonAlt(6.313, 11.484, 0.0);

Position v4 = Position.makeLatLonAlt(10.361, 17.226, 0.0);

Position v6 = Position.makeLatLonAlt(13.454, 22.139, 0.0);

Position v8 = Position.makeLatLonAlt(10.341, 22.368, 0.0);

SimplePoly sPoly1 = new SimplePoly(0,10000,"ft");

sPoly1.addVertex(v0);

sPoly1.addVertex(v2);

sPoly1.addVertex(v4);

sPoly1.addVertex(v6);

sPoly1.addVertex(v8);

SimplePoly sPoly2 = new SimplePoly(0,10000,"ft");

Position v10 = Position.makeLatLonAlt(6.270, 1.227, 0.0);

Position v12 = Position.makeLatLonAlt(10.012, 5.026, 0.0);

Position v14 = Position.makeLatLonAlt(14.068, 10.763, 0.0);

Position v16 = Position.makeLatLonAlt(17.154, 15.685, 0.0);

Position v18 = Position.makeLatLonAlt(14.040, 15.914, 0.0);

sPoly2.addVertex(v10);

sPoly2.addVertex(v12);

sPoly2.addVertex(v14);

sPoly2.addVertex(v16);

sPoly2.addVertex(v18);

PolyPath pp = new PolyPath("pp");

pp.addPolygon(sPoly1,0.0);

pp.addPolygon(sPoly2,54210.0);

sw.addPolyPath(pp);

Figure 21: Creating a PolyPath

Figure 22: Morphing Path

26

not require individual steps to have the same number of vertices as previous steps.
This is the default mode set when paths are generated via the pathFromState()

methods.
A polygon on an average velocity path will have a constant shape between each

step, but may abruptly change shape at each step. This sort of path has a distinct
beginning and end of existence (excepting static polygons, below). This is illustrated
in Figure 23.

Figure 23: Average Velocity Path

USER VEL An USER_VEL (user-specified velocity) path moves the entire poly-
gon with a constant but arbitrary velocity, preserving its shape. At each step, the
user must specify the polygon’s velocity, and it need not have any relation with
previous or successive steps. This path is a series of states that begin and end in
sequence and have the same identifier, but are not necessarily continuous. User-
specified velocity paths treat each step as a distinct state change from the previous
and do not require individual steps to have the same number of vertices as previous
steps. The final step does not signal the end of the path. The final state continues
indefinitely with the specified velocity (which may be zero). These paths continue
indefinitely. This is the default mode set when polygons are added to the path with
the addPolygon(poly, velocity, time) method.

A polygon on a user-specified velocity path will have a constant shape between
each step, but may abruptly change shape and position at each step—the direction
of travel does not necessarily have to lead to the next step. This sort of path has a
distinct beginning but no end. This is illustrated in Figure 24.

USER VEL FINITE A USER_VEL_FINITE path is the same as a USER_VEL

path except that the last step signifies the termination time of the polygon3.

Switching Modes It is generally recommended that the mode of a path be implic-
itly set via the type of constructor used. However, the mode can be altered after the

3The actual SimplePoly stored as the last step is not directly referenced, and may be empty.

27

Figure 24: User-Specified Velocity Path

initial construction using the setPathMode() method. Switching between MORPHING

and AVG_VEL modes only requires that the number of vertices be consistent. If
setPathMode() method is used to switch from the USER_VEL or USER_VEL_FINITE

mode, all user velocity information will be deleted. If this method is used to switch
to the USER_VEL or USER_VEL_FINITE mode, it will assign average velocities to each
step, and a zero velocity to the last step.

6.9.4 Static Polygons

A PolyPath with only one step in either the MORPHING or AVG_VEL mode (no matter
what time is assigned) can be used to describe a perpetual, unmoving polygon.
This may be used to represent something such as a special use airspace region that
will never change. It is necessary to have at least a two-step PolyPath in order to
represent a polygon that has a definite start and end time.

There are two predicates that indicate the end-status of a polypath:

sw.isStatic() Returns true if this PolyPath is static.
sw.isContinuing() Returns true if this PolyPath is continuing

This applies to both static polygons, which
are constant, and USER_VEL paths, which have
no definite end point.

6.9.5 ReRouteWx (Java only)

The API function reRouteWx can be used to generate a new large-scale lateral
route that avoids weather. This is intended to be a preprocessing step to a normal
resolveConflicts() call, when localized heuristic strategies are unlikely to find a
solution. It is different from resolveConflicts() in several respects:

• It does not resolve conflicts with traffic aircraft.

• It does not seek to retain as many original plan points as possible.

28

• Similar to the Track strategy, it operates in two dimensions, and will attempt
to avoid polygons through horizontal maneuvers.

• Because it operates in two dimensions, polygon heights are ignored.

This function performs a heuristic search to find a new path from the current/first
point of the plan to the last point of the plan. The method reRouteWx is invoked
as follows:

Pair<Boolean,Plan> ret = sw.reRouteWx(gridSize, buffer, factor);

Note that ret.first is a boolean value that is true if the resulting plan happens
to be conflict free and ret.second is the resulting plan. If ret.second is of size
zero or contains errors, the rerouting attempt failed. If the returned plan has no
errors and the boolean value is false, then the proposed plan still contains conflicts
that may be able to be resolved with a subsequent call to resolveConflicts().
The reRouteWx function creates a very simple vertical profile. It creates a constant
vertical speed from timeOfCurrentPosition to the final point in the plan.

The reRouteWx method finds a solution by creating a rectangular grid around
the ownship plan (starting at timeOfCurrentPosition) and computing weights for
each grid location. This weight is time dependent. If a weather polygon is present
within this grid at a particular time, then the weight is infinite. The weight may
also factor in a function of the distance of the grid from the current location of the
search path. There are user-settable parameters which can be used to control the
weightings and hence affect the heuristic search. These parameters include:

gridSize Formal parameter of method that sets size of grid square
(in meters).

buffer Formal parameter of method that sets the size of the exten-
sion of the grid in meters outside of the rectangle around
the ownship plan.

factor Formal parameter of method that specifies the weighting
of the closeness to the ownship path, if 0 then this feature
is not in effect.

unZigReroute Stratway parameter that controls whether the discovered
route is smoothed before returning it to the user.

reRouteLeadIn Stratway parameter that sets the amount of time at be-
ginning and end of a plan that cannot be changed by the
reRoute Method.

reduceGridPath Stratway parameter that controls whether collinear mid-
points are removed from the solution.

fastPolygonReroute Stratway parameter that impacts the grid search wrt poly-
gons (speed vs precision).

Other factors that influence the search are distance from the path end point (heading
directly to the end is favored) and changes in the rerouting direction (more gradual
turns are favored); these behaviors are currently hard-coded and not user-settable.

If the rerouting function fails, it is unlikely (but possible) that a normal resolution
on the original plan will succeed. The given gridSize should generally be smaller

29

than the diameter of most polygons (the visualization uses a default grid size of 10
nmi). Reducing the grid size will generally allow for more complicated paths, but
will increase the search time.

The buffer should be large enough to allow a new plan to potentially reach
around weather. The visualization, for example, uses a buffer that is the larger of
30 nmi or 20% of the ownship plan’s length. The reRouteLeadIn parameter should
be large enough to accomodate a potentially sharp turn. It is recommended that it
be larger than the standard turn radius for the aircraft’s current speed.

Currently factor values greater than 10 will generally cause the rerouting func-
tion to stay close to the original plan. Factor values of less than 3 will often take
the most direct route to the end of the plan.

If the parameter fastPolygonReroute is set to true, then ReRouteWx uses a
faster check for determining whether a polygon blocks a grid square. In this case,
an overapproximation of the polygon is used. However, it may fail to find potential
routes, especially if they would terminate near a polygon. If set to false, a more
precise check is performed, but the search time is increased by the greater number
of polygon edges that are processed. But, this enables ReRouteWx to find solutions
that skirt closer to the weather polygons. Reducing the gridSize and turning
off fastPolygonReroute will allow for more paths skirting between closely packed
weather cells, though this may adversely affect reroute computation times. Reducing
gridSize will generally have less effect on the result if fastPolygonReroute is on.

6.9.6 Dynamic Containment Constraint

The dynamic containment constraint is a constraint that restricts resolutions to
remain within a predefined, though possibly evolving, volume. This dynamic con-
tainment volume is the union of the space defined by a set of polygons and their
associated altitude zones. A Stratway strategy solution is forced to stay within the
dynamic containment volume.

If a dynamic containment volume is defined (by adding one or more PolyPaths
to Stratway via the Stratway.addDynamicContainmentPolygon() method), then
strategies will only succeed if the ownship both avoids any losses of separation with
traffic and weather, and also continuously remains within the union of the polygons
making up the overall containment volume.

Polygons in the containment volume may be static or dynamic. Static polygons
are generally used to designate a fixed geographic bound. Dynamic polygons can be
used to prevent the ownship from straying too far (both spatially and temporally)
from a defined path.

The dynamic containment constraint is not, by itself, a traditional geofence. A
containment check is only performed on sections of the plan that are modified by
the resolveConflicts() method. Therefore, the use of this constraint does not
guarantee containment in regions of the ownship plan that are not near conflicts
and, hence, will not correct containment violations in an input plan that is not
originally conflict free. However, if the original ownship plan is not initially within
the containment volume, the Stratway resolution call will return a warning message.

30

The reRouteWx() method will generally return a plan that remains fully within
the specified dynamic containment region. Thus it can potentially be used to
repair ownship plans that are outside of the containment volume. But nei-
ther resolveConflicts() nor reRouteWx() method will alter the initial point
(defined by timeOfCurrentPosition) or the final point in the plan. The
resolveConflicts() method can be forced to repair all containment violations
by surrounding the containment region with normal polygons. This would make all
original deviations from the containment region a conflict that must be repaired.

The method dynamicContainmentExitTime() can be used to check if the cur-
rent ownship (or a potential alternative) will leave the containment volume. If this
call returns a negative value, the ownship never leaves the volume. The method
dynamicContainmentEntryTime() can be used to insure that the plan is not origi-
nally outside of the containment volume.

These algorithms are still experimental, and for time-dependent containment
constraints, it is possible that a successful local resolution may cause the ownship to
exit the dynamic containment volume at some region that is not near a conflict. If
Stratway produces an otherwise successful resolution that exits the dynamic volume,
a warning will be issued. The method dynamicContainmentCheck() can be used to
determine if the ownship ever leaves the containment volume.

6.10 Java

The Java API is based on the Plan, Stratway, and Detector classes. See the code
Javadoc output for the most current version. The following subsections discuss some
of the main methods of interest.

6.10.1 ErrorReporter Interface

The Plan, Stratway, and Detector classes all implement the ErrorReporter in-
terface. Errors and warnings are accumulated internally and must be explicitly
checked. The generic name for both errors and warning is messages. In general, an
error means that the software encountered a situtation where there is no reasonable
recovery. Any results should be ignored. Warnings, on the other hand, represent
situations where the results could be correct, but more likely are in error. Errors
should never be ignored, whereas warnings, depending on context could be ignored.

hasError() Returns true if an error has been encountered. This indicates that
there is inconsistent data in the object, and consequently, the results should
be viewed with suspicion.

hasMessage() Returns true if an error or warning has been encountered. Warnings
indicate something unusual (but possibly still correct).

string getMessage() Returns a string representation of any errors or warnings.
Calling this method will clear any messages and as well as both the error and
warning status.

31

string getMessageNoClear(): Return a string representation of any errors or
warnings. Calling this method will not clear any messages or reset the error
or warning status to none.

6.10.2 Position, Velocity, and NavPoint Classes

There are four position-related classes and one velocity class that can be used to
define a 3-D or 4-D point in Stratway.

Point This class contains Cartesian (i.e., XYZ) coordinates.

LatLonAlt This class contains geodesic coordinates, i.e., latitude, longitude, and
altitude values are stored.

Position A 3-D coordinate class that generalizes both Cartesian and geodesic
coordinates. (Note that this does not automatically perform a projection be-
tween the two data types. The Position will be valid in only one of these
interpretations, which is indicated by the Boolean isLatLon() method.)

NavPoint A 4-D point class, which augments Position with time. NavPoints
can also include supplemental information, such as the point’s name and
type. NavPoints are generally created using a position and a time. Certain
NavPoints contain metadata that designats them as TCPs. These NavPoints
are generated as part of the trajectory generation process (Section 6.10.4).

Velocity A class describing a velocity. This can be defined using the x, y, z com-
ponents or using track, ground speed, and vertical speed.

Certain operations may result in INVALID instances of these data types, generally
indicating a failed computation or invalid input values.

The code segment in Figure 25 illustrates the creation of Position and NavPoint

objects. The constructed NavPoint np1 is located at latitude 1.8578 deg, longitude
-8.1082 deg, and altitude 10,000 ft. It’s specified time is 1000 secs.

double lat = 1.8578; // degrees

double lon = -8.1082; // degrees

double alt = 10000; // feet

Position p1 = Position.makeLatLonAlt(lat,lon,alt);

NavPoint np1 = new NavPoint(p1, 1000.0);

Figure 25: NavPoint creation

The code segment in Figure 26 illustrates the creation of a Velocity object.

6.10.3 Plan Class

Plans contain an ordered list of NavPoints. A Plan is said to be linear if it contains
no TCPs, and kinematic if it does. In general only a consistent kinematic plan (with

32

double trk = 20.1; // degrees

double gs = 555.5; // knots

double vs = 399.9; // fpm

Velocity v1 = Velocity.makeTrkGsVs(trk,gs,vs);

Figure 26: Velocity creation

proper TCPs) will have continuous (or nearly so) velocities throughout the plan. A
linear plan will have significant discontinuities in the velocity vector at vertex points.

There are some occasions where it is desirable to ignore the acceleration zones
in a kinematic Plan and treat it as just a sequence of linear segments. We call
this a linear interpretation of the Plan. Some of the methods in the Plan class
provide the ability to interpret and process a kinematic plan linearly. In the linear
interpretation, velocities and positions are interpolated linearly (along great circles
in the case of geodesic positions) between points in the plan—all accelerations are
zero. In the kinematic interpretation, points marked as TCPs designate acceleration
zones and positions and velocities between them are interpolated using kinematic
equations. Because it contains no TCPs, a linear plan has no acceleration zones and
therefore it will behave the same under both interpretations.

The following are the most important methods in the Plan class:

Plan() The constructor for a generic empty flightplan.

Plan(String name) Is the constructor for an empty plan for an aircraft labeled
name.

int add(NavPoint np) Adds a NavPoint to the Plan. It returns the index of the
point.

int size() Returns the size of a Plan. A 0-size Plan may be created if there is
an error. Points are indexed by an integer i : 0 ≤ i < size().

Plan planFromState(String id, Position pos, Velocity, v, double

startTime, double endTime) Returns a new Plan that is simply a projection
of the specified position and velocity. This new Plan begins at startTime and
ends at endTime.

double getTime(int i) Returns the time attribute for point i in seconds.

NavPoint point(int i) Returns the 4-D NavPoint for i. The NavPoint object
includes position and time data, as well as possible additional metadata.

Position position(double tm) Returns the (interpolated) 3-D position at time
tm.

Velocity velocity(double tm) Returns the instantaneous velocity at time tm.
For geodesic points, the track angle usually changes throughout a segment. As
a result, the track angle of this Velocity object may be considerably different

33

than track angles at either end of the segment. Similarly, the velocity will
change in kinematic acceleration zones.

Velocity initialVelocity(int i) and Velocity initialVelocity(double t):
returns the instantaneous velocity at a segment’s start (i) or at a given time
t.

6.10.4 TrajGen Class

This class is concerned with the translation between linear (without TCPs) and
kinematic (with TCPs) Plans4.

Plan makeKinematicPlan(Plan lpc, double bankAngle, double gsAccel,

double vsAccel,...) (several variants): Returns a kinematic version of the
linear plan lpc, using the given acceleration values. The returned Plan will
have errors logged if the translation failed (indicating the returned Plan is
erroneous).

Plan makeLinearPlan(Plan kpc): Returns a linear version of the plan kpc. The
returned Plan will have errors logged if the translation failed (indicating the
returned Plan is erroneous).

6.10.5 Stratway Class

The Stratway class is the primary interface to the strategic resolution capabilities.
The most important methods are descibed as follows:

Stratway(): Constructor.

void clearPlans() Removes all plans and clears all strategy-related messages. It
does not clear error/warning messages.

void addPlan(Plan p) Adds a Plan p to stratway. The first plan added must be
the ownship’s plan, all others are traffic aircraft. If the user retains a copy of
the ownship plan, it can be compared to returned versions (via equality) to
see what has changed.

void addPolyPath(PolyPath pp) Adds a PolyPath pp to stratway describing a
weather or special use polygon to avoid.

void addDynamicContainmentPolygon(PolyPath pp) Adds a PolyPath pp to
stratway describing a volume to remain within.

Plan resolveConflicts() Is the primary method for solving conflicts. It pro-
cesses the internal set of Plans (added via addPlan()), and possibly PolyPaths,
and returns a new ownship Plan. If successful, the new ownship Plan will con-
tain no conflicts, and a call to getResolutionStatus() will return the value

4In the Detector class, a kinematic plan is always interpreted linearly. For this reason, the
kinematic generator adds an extra point in the middle of a turn.

34

CONFLICT_FREE. If the resolution fails, getResolutionStatus() will return a
value other than CONFLICT_FREE. In this case, the returned Plan may have
some conflicts resolved, but not all. This method applies the default set of
strategies in the default order. The user may change the default order of
strategies using the setStrategies() method. It should be noted that the
internal state of the ownship plan is the same as the returned value after a
call to this method.

Plan resolveConflicts(int[] strategies) Given an internal set of Plans
(added via addPlan()), and possibly PolyPaths, this method resolves the
conflicts by applying the strategies in a user-specified order. It alters the
internal ownship Plan and returns a copy of the new plan. If successful,
this method returns a new ownship Plan with no conflicts and a call to
getResolutionStatus() will return the value CONFLICT_FREE. The strate-
gies should be an array (of size maxStrategies in C++, or arbitrary length
in Java), with each element indicating a strategy to try (in order).

ResolutionStatusValue getResolutionStatus() Returns the status of
the resolution generated by resolveConflicts(). Any value other
than CONFLICT_FREE indicates that some conflicts may remain in the plan.
This is identical to a call to getResolutionStatus(0).

void setOwnship(String s) Make the plan with name s the ownship. This is
accomplished by moving this plan to index location 0.

Detector getDetector() This returns a Detector object that has been popu-
lated with detection information for the current set of plans at the current
time. If this is called prior to a resolveConflicts() call, the returned object
will include any detected conflicts on the original set of input Plans. If this
is called after a call to resolveConflicts(), the returned object will include
information on unresolved conflicts, if any. Aircraft in the Detector object
are identified by the order in which Plans were added to the Stratway ob-
ject (ownship is 0, first traffic is 1, etc.). The conflicts in the Detector are
not necessarily sorted, so the conflict with index 0 is not necessarily the first
the ownship will encounter. Stratway does not directly indicate if the input
ownship plan is already conflict free. This information can be retrieved by
accessing the corresponding Detector object.

Detector getDetector(Plan p) This returns a Detector object that is popu-
lated with the specified ownship Plan p and any traffic Plans stored in this
Stratway object. This allows one to, for example, examine conflict information
on the original (uncorrected) ownship plan, or a plan of interest returned from
multipleResolutions(). It behaves otherwise similarly to getDetector().

Various parameters can be set using the provided setter and getter methods.
See Section 5, or the StratwayParameters class for a current list of all parameters.
Also note that each Plan and PolyPath must have a unique name.

35

6.10.6 Detector Class

The Detector class contains detailed information about all of the conflicts between
the ownship and traffic aircraft and polygons. Detector objects are expected to be
created via the getDetector() method in a Stratway object. The most important
methods are:

int size(): Returns the number of conflicts in this detector.

boolean conflict(): Returns true if a conflict was detected. The same as the
test d.size() == 0.

double getTimeIn(int i): Returns the absolute start time of the i-th conflict.

double getTimeOut(int i): Returns the absolute end time of the i-th conflict.

double getTimeClosest(int i): Returns the absolute time of closest approach
for the i-th conflict.

getClosestVert(int i): Returns the vertical distance between two aircraft for
conflict i, at the time of closest approach.

getClosestHoriz(int i): Returns the horizontal distance between two aircraft
for conflict i, at the time of closest approach.

int getTrafficID(int i): Returns the traffic ID for the ith conflict. This is the
index number of the Plan representing the aircraft in question. The ownship
is always index 0.

void sortConflicts(): Sort all conflicts based on their start times. Sorting the
conflicts will invalidate previous conflict index references. If the conflicts are
not sorted, then conflict index 0 may not be the first conflict.

int getNextConflict(double t): Returns the index of the next conflict that
starts after time t. Returns -1 if there are no conflicts starting after t. Note
that if the ownship is initially in loss of separation, that conflict “starts” at
the ownship plan’s start time.

int getConflictWithTraffic(int ac, double t): Returns the index of the
“first” ownship conflict with traffic aircraft or polygon ac, starting at or after
time t. “First” here is based on the current ordering of conflicts, which may
be unsorted. If there are no applicable conflicts with the traffic aircraft, this
returns a negative value.

It is also possible to populate a Detector object with conflict information for
an arbitrary set of plans via the detection method (and then access the results
as listed above); however, this is not necessary for any Detector retrieved from a
Stratway object.

36

6.11 C++

Method names and behaviors are nearly identical to the Java versions. See the
Stratway.h, Detector.h, and Plan.h files for the most current information.

6.12 Example Use of the API

This section presents one example captured in both Java and C++. The example
illustrates how to load geodesic points into a plan and how in invoke Stratway to
resolve conflicts. Here, the Java example is described in detail. Companion figures
for C++ are Figures 30, 31, 32, and 33.

This example illustrates the basic method for invoking the Stratway algorithm.
The example is structured in three pieces: loading the data into the plan, loading
the plans into Stratway, and finally checking the resolution that comes from Strat-
way. Figure 27 illustrates how to load NavPoint data into a plan using the add()

method. NavPoint’s can be created in a number of ways, and this example uses the
makeLatLonAlt() factory method. The four parameters to makeLatLonAlt() in-
clude the degrees of latitude, degrees of longitude (negative means west of the prime
meridian), the altitude in feet, and the time in seconds the aircraft will be at that
point. Alternatively, the plan data could be read from a file with the PlanReader

object.

Figure 28 shows how plans are added to the Stratway object with the addPlan()
method. The first plan added to Stratway is always the ownship plan, unless it is
directly changed using the setOwnship() method. The resolutions are always a
modification to the ownship plan. After the plans are added, Stratway generates a
Detector object that is used to get the number and times of conflicts.

Finally, Figure 29 shows how to call the Stratway object to create a strategic res-
olution. Once created, this resolution is displayed if it is different than the ownship
plan. Next, the resolution is evaluated (getResolutionStatus()) to determine if
the resolution was able to resolve all conflicts. In this example resolveConflicts()
is always called. Alternatively, one could first examine the Detector object from
Figure 28 and then only call resolveConflicts() if there are conflicts.

7 Core Detection Algorithms

Stratway’s detection algorithm is ultimately based on a Euclidean state detection
class called CDCylinder that uses an algorithm called CD3D. The primary functions
of this algorithm has been abstracted into an interface called Detection3D (in the
ACCoRD libraries). Implementing classes must be able to provide a loss of separa-
tion (or equivalent) function and a conflict detection (or equivalent) function that
sets values for time in, time out, and time of closest approach if a conflict occurs. It
is possible to replace CDCylinder in Stratway’s detection functions with any class
that implements Detection3D. The setCoreDetection(Detection3D d) method
allows this behavior modification.

Changing the core detection algorithm will directly affect Stratway’s internal

37

// These importings are used...

//import gov.nasa.larcfm.Util.Position;

//import gov.nasa.larcfm.Util.LatLonAlt;

//import gov.nasa.larcfm.Util.NavPoint;

//import gov.nasa.larcfm.Util.Plan;

//import gov.nasa.larcfm.Stratway.Stratway;

//import gov.nasa.larcfm.Stratway.Detector;

Stratway sw = new Stratway();

Plan own = new Plan("Ownship");

Plan traffic = new Plan("Traffic");

own.add(NavPoint.makeLatLonAlt(33.01, -94.50, 35000.0, 1200.0));

own.add(NavPoint.makeLatLonAlt(33.05, -93.87, 35000.0, 1440.0));

own.add(NavPoint.makeLatLonAlt(32.39, -91.24, 35000.0, 2370.0));

own.add(NavPoint.makeLatLonAlt(32.60, -89.51, 35000.0, 3900.0));

own.add(NavPoint.makeLatLonAlt(32.45, -88.17, 35000.0, 4300.0));

own.add(NavPoint.makeLatLonAlt(33.10, -85.33, 18400.0, 5800.0));

own.add(NavPoint.makeLatLonAlt(33.43, -83.81, 18562.8, 7100.0));

own.add(NavPoint.makeLatLonAlt(33.57, -82.27, 18782.1, 7563.1));

traffic.add(NavPoint.makeLatLonAlt(36.02, -88.58, 35000.0, 1565.1));

traffic.add(NavPoint.makeLatLonAlt(34.46, -88.13, 33000.0, 2822.4));

traffic.add(NavPoint.makeLatLonAlt(33.24, -87.68, 31000.0, 3850.3));

traffic.add(NavPoint.makeLatLonAlt(32.63, -87.16, 29000.0, 4800.0));

traffic.add(NavPoint.makeLatLonAlt(30.74, -84.55, 25000.0, 6068.9));

traffic.add(NavPoint.makeLatLonAlt(30.40, -82.70, 23000.0, 7229.9));

Figure 27: Stratway Java Example: Load Plans

38

sw.addPlan(own); // ownship is always added first

System.out.println("Ownship plan is:");

System.out.println(own);

sw.addPlan(traffic);

System.out.println("Traffic plan is:");

System.out.println(traffic);

// Show conflict

Detector d = sw.getDetector();

for (int i = 0; i < d.size(); i++) {

System.out.println("Ownship conflicts with aircraft "+

d.getTrafficID(i)+" at time "+d.getTimeIn(i));

}

Figure 28: Stratway Java Example: Add Plans to Stratway

detection functionality, as well as any Detectors, KinematicBands, or
KinematicIntentBands extracted from that instance of Stratway. Resolution strate-
gies may or may not be affected, depending on the specific strategy. Bands and
IntentBands are hard-coded to use the CD3D algorithm and not affected.

Stratway uses distinct instances for detection and resolution. In the default
case, detection uses an instance with D and H values, while resolution uses an
instance that also includes buffers. These parameters need to be set individually.
The algorithm used in resolutions is determined by the SetResDetection() method.
Similarly, it is possible to specify the detection algorithm used for polygon detection
and resolution using analogous methods.

The “set detection” methods make an internal copy of the Detection3D object,
allowing the original to be freely deleted. The “get detection” methods return
references to the internal instances, and can be directly modified (but should not be
deleted).

7.1 Java Example

The Java example in Figure 34 assumes a new user-defined User3D class has been
created that implements Detection3D. It initially uses the User3D algorithm for
both detection and resolution, then resets Stratway to use the default CDCylinder

for detection (but not resolution).

7.2 C++ Example

Figure 35 shows a C++ equivalent of the above example. There are pointer and
reference versions of the calls, named to indicate the appropriate interface. This
example uses pointers.

As always, the user must take care when dealing with pointers and references in

39

// Resolve conflicts

Plan solution = sw.resolveConflicts();

// See the resolution

if (! solution.equals(own)) {

System.out.println("New plan is: ");

System.out.println(solution);

// Check if conflict(s) were resolved

if (sw.getResolutionStatus()

== Stratway.ResolutionStatusValue.CONFLICT_FREE) {

System.out.println("All conflicts resolved.");

} else {

System.out.println("Not all conflicts resolved.");

d = sw.getDetector();

d.sortConflicts();

for (int i = 0; i < d.size(); i++) {

System.out.println("Ownship conflicts with aircraft "+

d.getTrafficID(i)+" at time "+d.getTimeIn(i));

}

}

} else {

System.out.println("No conflicts in plan");

}

// Check for errors

if (sw.hasError()) {

System.out.println(sw.getMessage());

}

Figure 29: Stratway Java Example: Resolution

40

#include "Plan.h"

#include <vector>

#include <string>

#include <iostream>

class Data {

// holds our flightplan data

public double lat, lon, alt, time; // position data

public boolean isFixed; // true if a fixed point

}

larcfm::Plan buildPlan(const std::vector<Data>& d,

const std::string& aircraftName) {

larcfm::Plan p = larcfm::Plan(aircraftName);

// add the other points

for (int i = 1; i < d.size(); i++) {

p.addLL(d[0].lat, d[0].lon, d[0].alt, d[0].time);

}

if (p.hasError()) {

std:cout << "error in planbuilder:" << p.getMessage()

<< std::endl;

exit(1);

} else {

return p;

}

}

Figure 30: Stratway API C++ Example 1: buildPlan

41

#include "Plan.h";

#include "Stratway.h";

#include <vector>

larcfm::Plan fixPlan(larcfm::Stratway& sw,

const std::vector<larcfm::Plan>& plans) {

sw.getMessage(); // clears any error messages

sw.clearPlans(); // clears internal data

for (int i = 0; i < plans.length; i++) {

sw.addPlan(plans[i]);

}

return sw.resolveConflicts();

}

Figure 31: Stratway API C++ Example 1: fixPlan

C++. Detection3D objects internal to a Stratway instance will be destroyed with
the Stratway instance or when replaced by a new “set” call. The C++ the user is
responsible for cleaning up the original instances of any Detection3D objects passed
into Stratway.

8 Concluding Remarks

The Stratway program is a strategic conflict resolution program that operates on
intent information that is received in the form of plan objects. Plan objects are time
sequences of 3-D points in either Euclidean or geodesic coordinates. The program
produces a revised ownship plan object that avoids the conflict zones present in the
original. The plan objects that are processed can be either linear plan objects or
kinematic plan objects. The latter includes acceleration zones and thus provides the
ability to define a more flyable, continuous velocity vector. The Stratway program
has also been designed to process moving polygons that can be used to represent
weather systems or other regions of space that must be avoided. The resolution
algorithms produce solutions that remain outside of these moving polygons. The
user can also specify a set of polygons that prescribe a time-dependent containment
region. If this is done, the Stratway program returns solutions that remain within
the union of these dynamic containment polygons.

The Stratway program also provides a weather reroute function that uses a
grid-based A*-search algorithm. This function can be used to find a new route
that avoids polygons, but it does not avoid traffic aircraft. It is different from the
standard resolution strategies in that it does not seek to preserve existing points.
The weather reroute function can be controlled through several parameters including
one that indicates how much weight should be given to the current flight path. The

42

#include "Plan.h"

#include "LatLonAlt.h"

#include "Stratway.h"

#include <vector>

#include <string>

#include <iostream>

class AirCraftData {

public std::vector<Data> data; // from buildPlan figure

public std::string name;

}

...

// inside main()

larcfm::Stratway sw;

// assume we have an array of AirCraftData from somewhere

...

while(sceneriosLeftToExamine) {

std::vector<larcfm::Plan> plans;

plans.reserve(numAircraft);

// populate aircraft data, with ownship data in aircraft[0]

for(int i = 0; i < numAircraft; i++) {

plans.push_back(buildPlan(aircraft[i].data, aircraft[i].name));

}

larcfm::Plan result = fixPlan(sw,plans);

if (sw.hasError()) {

std::cout << "Stratway encountered an error: "

<< sw.getMessage() << std::endl;

// error handling ...

} else if (sw.getResolutionStatus == CONFLICT_FREE) {

if (result == plans[0]) {

// there were no conflicts to start with! ...

} else {

// success! re-integrate your data

for (int i = 0; i < result.size(); i++) {

double pointTime = result.getTime(i);

LatLonAlt pointPosition = result.getPositionLL(i);

// feed point data back into your system ...

}

}

} else {

// resolution failed, perform a tactical solution ...

}

...

} // end while loop

Figure 32: Stratway API C++ Example 1: main() fragment

43

#include "Plan.h"

#include "LatLonAlt.h"

#include "Stratway.h"

#include <iostream>

...

if (sw.getResolutionStatus == larcfm::CONFLICT_FREE) {

// success ...

} else {

// conflicts still remain

larcfm::Detector d = sw.getDetector();

// print out conflicts in order:

d.sortConflicts();

for (int i = 0; i < d.size(); i++) {

std::cout << "Ownship conflicts with aircraft "

<< d.getTrafficID(i) << " at time "

<< d.getTimeIn(i) << std::endl;

}

}

...

Figure 33: Stratway API C++ Example 1: Detector access

import gov.nasa.larcfm.Stratway.Stratway;

import gov.nasa.arcfm.ACCoRD.CDCylinder;

...

Stratway sw = new Stratway();

Detection3D d = new User3D();

sw.setCoreDetection(d); // internal copy

sw.setResDetection(d); // internal copy

// Load Plans here

...

Detector det = sw.getDetector();

//process det here

...

sw.setCoreDetection(new CDCylinder());

// use CDCylinder

...

Figure 34: Java setCoreDetection()

44

#include "Stratway.h"

#include "CDCylinder.h"

#include "Detection3D.h"

...

Stratway sw = new Stratway();

Detection3D *d = new User3D();

sw.setCoreDetectionPtr(d);

sw.setResDetectionPtr(d);

delete d; // be sure to free this object!

// Load Plans here

...

Detector det = sw.getDetector();

//process det here

...

d = new CDCylinder();

sw.setCoreDetectionPtr(d);

delete d; // be sure to free this object!

// use CDCylinder

...

Figure 35: C++ setCoreDetection()

reroute function can be used in conjunction with the resolution strategies to produce
trajectories that are conflict-free from other aircraft.

The Stratway program has been developed so that it can be easily executed
from other programs. It has a simple application program interface (API) which is
available in either Java or C++. The program is highly user configurable through
use of parameters. The strategic detection algorithm used in Stratway (i.e., CDII) is
also highly configurable, enabling different definitions of the protection zones around
aircraft.

9 References

1. Ricky Butler, George Hagen, and Jeffrey Maddalon. The chorus conflict and loss
of separation resolution algorithms. Technical Memorandum NASA/TM-2013-
218030, NASA, Langley Research Center, Hampton VA 23681-2199, USA, Aug
2013.

2. INTENT Consortium. INTENT project: The transition towards
global air and ground collaboration in traffic separation assurance.
http://www.intentproject.org.

3. Federal Aviation Administration (FAA). Trajectory Based Operations.
http://www.faa.gov/nextgen/portfolio/sol sets/tbo/.

45

4. George Hagen and Ricky Butler. Towards a formal semantics of flight plans and
trajectories. Technical Memorandum NASA/TM-2014-218662, NASA, Langley
Research Center, Hampton VA 23681-2199, USA, Dec 2014.

5. George Hagen and Ricky Butler. Stratway visualization tool user’s manual.
DRAFT to be published, NASA, Langley Research Center, Hampton VA 23681-
2199, USA, April 2016.

6. David A. Karr, Robert A. Vivona, Stephen M. DePascale, and David J. Wing.
Autonomous operations planner: A flexible platform for research in flight-deck
support for airborne self-separation autonomous operations planner: A flexi-
ble platform for research in flight-deck support for airborne self-separatio. In
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Confer-
ence, 2012.

7. RTCA SC-186. Minimum Aviation System Performance Standards for Automatic
Dependent Surveillence Broadcast (ADS-B). RTCA, 2002.

8. Barry N. Taylor and Ambler Thompson. The international system of units (SI).
Technical Report NIST Special Publication 330, National Institute of Standards
and Technology, Gaithersburg, MD, 2008.

9. NASA Langley Formal Methods Team. Airborne co-
ordinated conflict resolution and detection (ACCoRD).
http://shemesh.larc.nasa.gov/people/cam/ACCoRD/.

46

Appendix A

NavPoints, Positions, and Velocities

The NavPoint Class embellishes a Position with various attributes. These
attributes fall into two basic categories:

• history of modification,

• acceleration features (i.e., TCPs).

These attributes are used by the Stratway program. They allow the Stratway user
to constrain the solution space of the program.

The Position class provides a common interface for both Euclidean and geodesic
positions. Figure A1 illustrates the different Position constructors. The method
isLatLon() returns a boolean value indicating whether the position is geodesic or
not. Factory methods are also available, as seen in Figure A2.

LatLonAlt lla = LatLonAlt.make(lat, lon, alt);

Position pos = new Position(lla); // create with Lat/Lon data

double x,y,z;

Position pos2 = new Position(x, y, z); // create with Euclidan data

Vect3 v3;

Position pos3 = new Position(v3); // create with Euclidan data

Figure A1: Position constructors

Position pos4 = Position.makeLatLonAlt(lat, lon, alt)

Position pos5 = Position.mkLatLonAlt(lat, lon, alt)

Position pos6 = Position.makeLatLonAlt(lat, lat_unit, lon, lon_unit,

alt, alt_unit);

Position pos7 = Position.makeXYZ(double x, double y, double z);

Position pos8 = Position.mkXYZ(double x, double y, double z);

Position pos9 = Position.makeXYZ(x, x_unit, y, y_unit, z, z_unit);

Figure A2: Position factory methods

Most of our programs allow either Euclidean or geodesic data, but they can-
not be mixed. If the first data point entered is Euclidean then all of the rest of
the data must also be Euclidean. If the position is Euclidean the accessors x(),
y() and z() can be used to retrieve the components. If the position is geodesic,
then the accessors lat(), lon(), alt() are used. These return the results in stan-
dard internal units (SI). If output is desired in degrees and feet, then the following
accessors are also available latitude(), longitude(), and altitude(). The meth-
ods xCoordinate(), yCoordinate(), and zCoordinate() return Euclidean data in

47

units of nmi, nmi, and ft. Note that short names return internal units (SI) and long
names return ATM customary units.

Vect3 v = new Vect3(1,2,3);

Velocity vel1 = Velocity.make(v);

Velocity vel2 = Velocity make(Vect2 v);

Velocity vel3 = Velocity mkVxyz(vx, vy, vz);

Velocity vel4 = Velocity makeVxyz(vx, vy, vz);

Velocity vel5 = Velocity mkTrkGsVs(trk, gs, vs);

Velocity vel6 = Velocity makeTrkGsVs(trk,gs, vs);

Figure A3: Velocity constructor and factory methods

The Velocity class extends a Vect3 class with additional machinery. Figure A3
illustrates how a Velocity object is created The following methods are useful:

track() returns track angle in radians (i.e. −π to π).
compassAngle() returns the compass angle (i.e. 0 to 2π).
groundSpeed() returns the ground speed
verticalSpeed() returns the vertical speed
Hat() returns a unit velocity vector in same direction

48

Appendix B

Debugging Tools

Several methods have been included to aid the user in debugging pro-
grams. These methods are found in the PlanUtil class. There are also sev-
eral print methods available in the Stratway class including: dumpParameters(),
currentPlansToOutput(), containmentPolysToOutPut(),
localDataToOutput(), and toString().

void savePlan(Plan plan, String fileName) Write the plan to the output file
fileName.

void savePlans(List<Plan> plans, String fileName) Write the set of plans
to the output file fileName.

boolean isConsistent(Plan p, boolean silent) Check the plan p to make
sure the plan is well-formed and that the beginning and ending TCP pairs
have a correct mathematical relationship. Problems are written to standard
output. If silent is set to true, then the output messages are surpressed.

49

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-05-2016

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

The Stratway Program for Strategic Conflict Resolution: User’s Guide

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
154692.02.40.07.01

6. AUTHOR(S)

Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–20698

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2016–219196

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 03
Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Stratway is a strategic conflict detection and resolution program. It provides both intent-based conflict detection and conflict resolution for a
single ownship in the presence of multiple traffic aircraft and weather cells defined by moving polygons. It relies on a set of heuristic search
strategies to solve conflicts. These strategies are user configurable through multiple parameters. The program can be called from other
programs through an application program interface (API) and can also be executed from a command line.

15. SUBJECT TERMS

air traffic, conflict, detection, resolution, avoidance, secondary conflict, weather polygons, application programming interface,
verification

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

57

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

